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The dynamics of a sphere fluidized in a nearly levitating upflow of air were previously found to be identical
to those of a Brownian particle in a two-dimensional harmonic trap, consistent with a Langevin equationfOjha
et al., NaturesLondond 427, 521 s2004dg. The random forcing, the drag, and the trapping potential represent
different aspects of the interaction of the sphere with the air flow. In this paper we vary the experimental
conditions for a single sphere, and report on how the force terms in the Langevin equation scale with air flow
speed, sphere radius, sphere density, and system size. We also report on the effective interaction potential
between two spheres in an upflow of air.
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I. INTRODUCTION

One of the great challenges in physics today is to under-
stand the dynamics of driven nonequilibrium systemsf1g.
This is particularly important in soft-matter physics, because
the materials often have a delicate mesoscopic structure that
is easily perturbed far from equilibrium. There, an under-
standing of the microscopic dynamics is crucial for a funda-
mental understanding of macroscopic behavior. Granular ma-
terials are an excellent example of this pointf2,3g. When
subjected to strong driving forces, granular systems exhibit
gas- or liquidlike behavior at the macroscopic scale and
strong velocity fluctuations and collisions at the grain scale.
The microscopic fluctuations are created by the act of flow-
ing, and, at the same time, are responsible for the dissipation
that limits the rate of flow. The difficulty of treating the
fluctuations is one reason why granular mechanics remains a
forefront research topic, and why engineering systems are
alarmingly prone to failure.

One way to characterize the microscopic dynamics in a
granular gas or liquid is by the distribution of speed fluctua-
tions. This has a long history, and is associated with attempts
to develop a system of partial differential equations describ-
ing granular hydrodynamicsf4–9g. The average kinetic en-
ergy associated with speed fluctuations has come to be
known as the “granular temperature,” in loose analogy with
kinetic theory of gases. An interesting line of research has
been to explore the extent to which this analogy holds, i.e.,
the extent to which statistical mechanical concepts for true
thermal systems can be used to describe granular fluctua-
tions. For dilute or two-dimensional systems it is relatively
straightforward to track grain motion by video techniques.
Experimentalists have thus studied whether or not speed dis-
tributions are Gaussian, and whether or not equipartion is
obeyedf10–14g. Recently we did the same for a very dilute
system, consisting of only a single grain, driven by a steady
upflow of gasf15g. Part of our motivation was to isolate the
role of gas-mediated interactions from collisional and cohe-
sive interactions in bulk gas-fluidized beds, which is a topic
of long-standing importancef16g. By measuring the time-
dependent dynamics, as well as the usual speed distribution,
and by performing auxiliary mechanical measurements, we
were able to demonstrate that the motion of the sphere is

identical to that of a Brownian particle in a two-dimensional
harmonic trap. For such a system the thermal analogy is
perfect.

In this paper we exploit the thermal analogy to deduce
quantitative information about interactions in gas-fluidized
systems. Now that the tools of statistical mechanics are at
our disposal, we may deduce the salient features of the forces
acting on a sphere from measurements of position and speed
statistics. In addition to providing additional data and a more
detailed description than in Ref.f15g, this follows through on
our original motivation to study the fundamental forces at
play in gas-fluidized beds. Our statistical mechanical ap-
proach is completely orthogonal to traditional wind-tunnel
measurementsf17g, and provides a clean decomposition of
gas-mediated interactions into three distinct contributions.
We begin with a discussion of statistical mechanics and the
Langevin equation of motion, both to review prior findings
and to define notation for use here. After describing our ex-
perimental apparatus, we then present data pertaining to the
effective temperature and its scaling with system parameters,
all for a one-sphere system. Lastly, we turn to interactions of
a sphere with both the container boundary as well as with a
second sphere.

II. LANGEVIN EQUATION

The particles of interest are spheres of massm, diameter
D=2Rd, and moment of inertiaI. They roll without sliding,
so their kinetic energy isK= 1

2sm+ I /Rd
2dv2. In order to char-

acterize the motion entirely in terms of position, velocity,
and acceleration vectorshr std ,vstd ,astdj, we define an effec-
tive inertial mass and density asme=m+ I /Rd

2 and re
=me/ fs4p /3dRd

3g, respectively. As shown in Ref.f15g, the
equation of translational motion of the rolling gas-fluidized
sphere is

meastd = − = Vsr d − meE
−`

t

Gst − t8dvst8ddt8 + Frstd. s1d

This is recognized as Newton’s second law, where the right
hand side is the sum of forces acting on the sphere. The first
term is the gradient of an effective potential; for a harmonic
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spring this force is −Kr std. The second term represents the
drag force, whereGstd is the memory kernel. In Ref.f15g it
was shown to be exponential,

Gstd = Gogo exps− gotd. s2d

Thus 1/go is a time scale representing the duration of the
memory; 1/Go is a time scale such that the drag force has a
typical value of −meGov. The final term in Eq.s1d is a time-
varying random forceFrstd. As shown in Ref.f15g, the com-
ponents ofFrstd have Gaussian distributions and exponential
temporal autocorrelations. In particular, it was demonstrated
that the random and drag forces are related according to the
fluctuation-dissipation relationsFDRd f18g:

kFrst8d ·Frstdl = 2mekTGst − t8d, s3d

wherekT=mekv2l /2 is the effectivesgranulard temperature.
Note that the two momentum degrees of freedom each have
kT/2 of energy, consistent with the equipartition theorem.
Satisfaction of the FDR means that the particle dynamics are
identical to those of a thermal Brownian particle; therefore,
Eq. s1d is truly the Langevin equation. Even though the roll-
ing sphere is a driven far-from-equilibrium system, statistical
mechanics holds unchanged except that the value of the ef-
fective temperature is not the thermodynamic temperature of
the apparatus.

III. EXPERIMENTAL DETAILS

Our methods are identical to those first reported in Ref.
f15g. The fluidization apparatus is built around a
12-in.-diameter brass sieve, with 300-mm wire mesh spacing
and with 4-in.-high side wall. The full sieve is usually used,
but occasionally a cylindrical insert is placed concentrically
in order to vary the radiusRcell and/or the wall height. The
wire mesh is flat and level, and is very fine compared to the
sphere size. The sieve is mounted atop a 20 in.320 in.
34 ft tall windbox consisting of two nearly cubical cham-
bers separated by a perforated metal sheet. In some of the
runs, a 1/2-in.-thick foam air filter is sandwiched between a
second perforated metal sheet. Air from a blower is intro-
duced to the lower chamber through a flexible cloth sleeve.
The flow rate is controlled by a variac. The geometry of the
windbox is designed to achieve a uniform upward air flow
across the whole area of the sieve. This is verified and moni-
tored with a hot-wire anemometer.

The sphere position is measured from digital images ac-
quired at a rate of 120 frames per second. The camera has a
resolution of 6403480 pixels, and is mounted about 1 m
directly above the sieve via a scaffolding attached to the
windbox. Two 18-in. fluorescent lights are mounted just be-
low the camera, such that the illumination is uniform and the
thresholded image of the sphere appears as a white disk in a
black background. In order to achieve very long run times,
using an ordinary personal computer, we developed custom
video compression and particle tracking algorithms that per-
mit real-time analysis without the need for writing prohibi-
tively large data sets to hard drive. At heart is a run-length
encoding scheme: for each row, it is enough to note the start-

ing pixel and the segment length. Since black pixels have
zero intensity, the sphere location is then computed as the
center of brightness of the entire thresholded image.

The sphere velocity and acceleration are found by post-
processing position vs time data. Specifically, we fit a third-
order polynomial to data within a window of ±4 points.
Gaussian weighting that is nearly zero at the edges is used to
ensure continuity of the derivatives. This process also refines
the position measurement. In the end we achieve a resolution
of ±0.05 mm, which corresponds to about 0.1% of the sphere
diameter and about 0.08 pixels.

The specific spheres studied are listed in Table I. For
each, the allowed air speedsu are bounded by 200 and
500 cm/s depending on the sphere. The range is limited be-
cause at lower air speeds, the sphere occasionally rolls along
its seam or along the weave of the wire mesh. At higher air
speeds, the sphere occasionally scoots or loses contact with
the sieve. In all cases, the air speed is less than the terminal
falling speed of the sphere. The Reynolds number based on
sphere size is of order 104. Thus the sphere sheds turbulent
wakes, and this gives rise to the stochastic motion.

IV. EFFECTIVE TEMPERATURE

In this section we begin reporting on how the various
terms in the Langevin equation scale with system param-
eters. The first is the effective temperature, given by the
mean-squared speed askT=mekv2l /2. Data for the mean-
squared sphere speed are shown as a function of air speedu
in Fig. 1 for various types of sphere. In all cases, the data are
inconsistent with the simplest dimensionally correct scaling,
kv2l,u2. Rather, the mean-squared speed appears to scale as
the cube of the air speed. Thusu3/ kv2l has units of speed and
presumably depends on physical characteristics of the
sphere, the fluidizing air, and gravity.

To uncover the full scaling we first proceed by dimen-
sional analysis. Assuming thatkv2l decreases with increasing
sphere density, the combinationsrair /redau3/ kv2l is the im-
portant characteristic speed, where the exponenta of the
density ratio is to be determined. We can conceive of only
three possibilities for the origin of this characteristic speed:
the speed of sound, 34 000 cm/s; a speed set by gravity and
the sphere size,ÎgD; and a speed set by air viscosity and the
sphere size,h /D. To investigate, we compare these possibili-
ties with data for the characteristic speed vs sphere size in
Fig. 2, for several integer values ofa. We find that the best

TABLE I. Inertial mass density and diameter for the various
spheres. The ping-pong and king-pong balls are both hollow plastic
spheres, with a 0.4-mm shell thickness; all others are solid.

Sphere re sg/cm3d D scmd

King-pong 0.122 4.41

Ping-pong 0.146 3.80

Wood 0.987 1.27–3.70

Polypropylene 1.14 0.56–2.54

Nylon 1.56 0.63–2.54
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data collapse is attained fora=2. For that case the value and
functional form of the characteristic speed are both consis-
tent with ÎgD. Adjusting the numerical prefactor to best
match all the data, we thus find that the mean-squared speed
of a sphere is given by

kv2l = 0.7Srair

re
D2 u3

ÎgD
. s4d

This observed scaling of the mean-squared sphere speed
is consistent with a simple model of the stochastic motion of
the sphere being driven by turbulence in the air. The idea is
to balance the ratePin at which kinetic energy is transferred
from the air to the sphere with the ratePout at which energy
is dissipated by drag. Ignoring numerical factors, the latter is
the characteristic drag force times the characteristic sphere

speed:Pout=sreD
3Govdv, using the notation of Sec. II. The

former isPin=sreD
3dv2dgo, where the term in parentheses is

the kinetic energy change due to the shedding of a wake and
go=u/D is the rate at which wakes are shed. Assuming that
the wake size scales with sphere size, momentum conserva-
tion givesredv=rairu. The numerical prefactor is nontrivial,
since it must depend on the ratio of wake to sphere size and
also on the fraction of momentum in the plane of the sieve,
transverse to the average air flow direction. Combining all
these elements, the balance of power input with power out-
put is rair

2u3/D=re
2kv2lGo. This is identical to our data on

the mean-squared speed, Eq.s4d, provided that the drag am-
plitude scales asGo~Îg/D and that the memory decay rate
scales asgo~u/D. Next we demonstrate that these provisos
both hold true.

V. DRAG AND RANDOM FORCES

Recall from Eqs.s1d–s3d in Sec. II that both the drag and
random forces are specified by an exponential memory ker-
nel, Gstd=Gogo exps−gotd. In Ref. f15g we found consistent
values forGo and go from two different methods. The first
was from the velocity autocorrelation function using the
Langevin equation. The second was from the amplitude and
phase of the average response to a small sinusoidal rocking
of the entire apparatus at various frequencies. Here we em-
ploy the former method for both the ping-pong and king-
pong balls, as a function of air speed. The results are shown
in Fig. 3, made dimensionless according to the expectations
of Sec. IV. Specifically, the top plot demonstrates that the
drag amplitude behaves as expected:

Go = 0.17Îg/D. s5d

The importance ofg suggests that rolling friction is the
dominant source of drag, as opposed to shear or compression
of the air. Perhaps we may identify the numerical prefactor
of g as a coefficient of friction,Go=Îmg/D with m=0.03. It

FIG. 1. sColor onlined The mean-squared speed of a rolling
sphere vs the speed of the upflow of air, for several types of sphere
as labeled. The solid lines are a best fit to cubic behaviorkv2l
,u3. The data are not consistent with the dimensionally simpler
scalingkv2l,u2, shown as a dashed line. All data are for the full
12-in. sieve, except the small right triangles for ping-pong balls in
cells of smaller radii.

FIG. 2. sColor onlined Scaling of the characteristics speeds with
the sphere diameterD for several different spheres as labeled. The
mean-squared speedkv2l of the sphere is proportional to the cube of
the air speed,u3; therefore, the ratio of these quantities is a charac-
teristic speed that reflects both the sphere density and the dissipa-
tion mechanism. The data collapse is best whenu3/ kv2l is multi-
plied by the square of the density ratio. Then the value and form of
the characteristic speed are both consistent withÎgD, indicating
that rolling friction is the dominant dissipation mechanism.

FIG. 3. sColor onlined Amplitude Go and decay ratego of the
memory kernel,Gstd=Gogo exps−gotd as a function of air flow
speed, for two different spheres as labeled; these quantities are ren-
dered dimensionless by appropriate factors of sphere diameter,
gravitational acceleration, and air flow speed according to expecta-
tion. The dashed lines represent average values, 0.17 in the top plot
and 0.11 in the bottom plot.
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would be interesting to investigate howm changes with mesh
size and ball roughness. The bottom plot of Fig. 3 demon-
strates that the memory decay rate also behaves as expected:

go = 0.11u/D. s6d

This is consistent with earlier visualization and pressure fluc-
tuation studies, which found that the vortex shedding fre-
quency is 0.15u/D for Reynolds numbers in the range
103–106 f19,20g. Here, Eq.s6d means that a new wake is
shed every time the air flows a distance of about nine sphere
diameters; equivalently, the Strouhal number is St;goD /u
=0.11.

We emphasize that while the results of Eqs.s5d and s6d
directly specify the drag force, they also specify the random
force via the fluctuation-dissipation relation Eq.s3d. The ran-
dom driving and the drag forces are different aspects of the
same physical interaction between the sphere and the turbu-
lence it generates in the air. To recap, the random force has
Gaussian components and an exponential temporal autocor-
relation,

kFrst8d ·Frstdl = 2mekTGogo expfgost − t8dg, s7d

wherekT=mekv2l /2 is specified by Eq.s4d.

VI. BALL-WALL INTERACTION

The potentialVsrd is the only part of the Langevin equa-
tion not yet discussed. This can be deduced from the radial
position probability functionPsrd using principles of statis-
tical mechanics; namely, the probability to find the sphere in
a thin ring of radiusr is proportional to the ring radius times
a Boltzmann factor,

Psrd ~ r expf− Vsrd/kTg, s8d

wherekT is the effective temperature discussed in Sec. IV. In
Ref. f15g, the sphere was found most frequently near the
center of the cell such that thex and y distributions were
nearly Gaussian andPsrd<s2r / kr2ldexps−r2/ kr2ld. This
means that the interaction potential is nearly harmonic,
Vsrd<Kr2/2. The value ofkr2l gave a spring constant that
was verified by an auxiliary mechanical tilting measurement.
Here, we examine the shape of the potential more closely,
and we explore its behavior as a function of system param-
eters.

Radial position probability data for all runs are converted
to the interaction potential via Eq.s8d, and displayed alto-
gether in Fig. 4. The potential is left in units ofkT, and the
radial position is scaled by the cell radiusRcell for clarity.
Remarkably, the potential is given by the same empirical
form independent of sphere size, cell radius, and air flow
speed:

Vsrd/kT=
30sr/Rcelld2

1 + sr/Rcelld3 . s9d

In particular, the rms radial position of a sphere is always set
by the cell sizeÎkr2l=s0.20±0.01dRcell. The harmonic form
of the potential also softens away from the center. It actually

becomes attractive very close to the walls, strong enough to
occasionally trap an unwary sphere that wanders too far from
home.

The geometric scaling of the potential with cell size, in-
dependent of air flow speed, leads us to believe that the
origin of the behavior lies in the interaction of the shed vor-
tices with the boundary of the cell. This is bolstered by other
observations as well. First, even very slight imperfections in
the circularity of the cell can break the radial symmetry of
the position distributions. Second, placing a hand or other
object downstream from the sphere affects its position distri-
bution as well. Evidently, the vortex street is connected to the
sphere such that force can be exerted on the sphere via per-
turbation to the vortices.

One possible picture for how the vortex street senses the
wall is that the transverse extent of the vortices grows lin-
early with distance downstream. Then the sphere could sense
its position from the height at which the expanding vortices
hit the boundary. See Figs. 31, 55, 56, 172, and 173 of Ref.
f21g for photographs of the vortices behind various objects at
approximately the same Reynolds number as here. Another
possible picture is that the background flow, while homoge-
neous near the sieve, develops large-scale structure down-
stream that grows from the edge inward. Then the sphere
could sense its position from the height at which its vortices
merge with the dome of turbulent structure above. See Figs.
152 and 153 of Ref.f21g for photographs of the isotropic
turbulence behind a grid and its evolution downstream.

FIG. 4. sColor onlined Interaction potential between a variety of
spheres and the walls of the container vs distance from the center of
the cell scaled by cell radius. The top data set is taken at constant air
flow speed, while all others are taken at constantsfull d cell size. The
dashed curves represent a harmonic potentialVhsrd /kT
=30sr /Rcelld2. The solid curves represent an empirical average of all
the data,Vsrd /kT=30sr /Rcelld2/ f1+2sr /Rcelld3g. An arbitrary con-
stant offset was added in order to separate the different data sets.
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We performed a few tests in an attempt to clarify the
physical pictures. First, we increased and decreased the wall
height to a considerable extent. This had no influence on the
sphere position statistics, which seems to rule out the
growing-vortex scenario. Our second test was to stretch a
fine netting across the top of the sieve. We hoped that this
would affect the rate of vortex shedding or the way the vor-
tex street is connected back to the sphere. However, it had no
influence on the sphere position statistics either. Thus, we
must leave the origin of the geometric nature of the sphere-
wall interaction potential as something of a mystery. Flow
visualization may be helpful. We close by emphasizing that,
whatever its origin, the sphere is repelled by the cell wall in
a way that, remarkably, can be described by a potential en-
ergy and a corresponding conservative force.

VII. BALL-BALL INTERACTION

In the remainder of this paper we report on the air-
mediated interaction between two spheres rolling in the same
nearly levitating upflow of air. Throughout, we set the air
flow to 280 cm/s, before adding spheres. As above, we shall
see that this may be studied using position probability data
and statistical mechanics. And just as for the ball-wall force,
we shall see that the ball-ball force is repulsive. Naively one
might expect a Bernoulli-like attraction, just as when air is
blown between two objects. However it is immediately ob-
vious from visual inspection that here the two spheres repel.
Only rarely do they collide, with physical contact between
their surfaces; they never stick; they accelerate apart after
close approach.

To begin we display speed and radial position probabili-
ties in Fig. 5. The light curves are for a single ball in the
same air flow, for comparison. As above and in Ref.f15g, the
x andy components of velocity and position are all Gaussian.
When a second sphere is added, we verify that the velocity
and position distributions remain radially symmetric and
identical for each sphere. The top plot of Fig. 5 demonstrates
that the average speed distribution of the two spheres re-
mains Gaussian. Thus the mean-squared speed can be used to
define an effective temperature, as before for a single sphere.
However, this temperature increases when a second sphere is
added, even though the flux of air remains unchanged. Evi-
dently Eq.s4d holds in detail only for a one-sphere system.
The reason may be that, due to a decrease in free area, the air
flow speed around the two spheres is greater than when only
one is present. It may also be that the process of energy
injection via vortex shedding is altered. The bottom plot in
Fig. 5 demonstrates that the radial position probability be-
comes non-Gaussian when a second sphere is added. Each
sphere spends less time in the very center of the cell, due to
mutual repulsion, with the rms radial position increasing
from 2.8 to 4.8 cm when a second sphere is added. As be-
fore, the spheres still are repelled from the cell wall as
though in a harmonic trap.

For statistical mechanics to be useful for studying the
sphere-sphere repulsion, it is required that the velocity com-
ponents be Gaussian as demonstrated above. It is also re-
quired that there be no correlation between the instantaneous

velocities of the two spheres. To check this, we compute
temporal velocity correlation functions and plot the results in
Fig. 6. The velocity autocorrelation for a single sphere alone
in the cell is shown by a light curve, for comparison. The
velocity autocorrelation for each sphere, when two are
present, is shown by a heavier curve. It decays over the same
time scale as the one-sphere autocorrelation, though the os-
cillations are less pronounced. The cross correlation between
the velocities of the two spheres is shown by a dashed curve.
It too oscillates and decays over the same time scale as the
autocorrelations. But, crucially for us, it vanishes att=0.

FIG. 5. sColor onlined Speed and radial position probability
functions for one and two spheres rolling in the same upflow of air.
Note that the speed distributions are Gaussian in both cases, as
shown by the dashed curves. By contrast, the radial position func-
tion becomes non-Gaussian when a second sphere is added to the
system.

FIG. 6. sColor onlined Velocity correlations between spheresi
and j , for one- and two-sphere systems as labeled. Note that the
cross correlation vanishes att=0, which is required if statistical
mechanics is to be invoked.
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Thus the instantaneous equal-time velocities of the two
spheres are indeed uncorrelated as required.

With the above preliminaries established, we may now
exploit the principles of statistical mechanics in order to de-
duce the sphere-sphere interaction potentialVsssrd, wherer
is the distance between the centers of the two spheres. The
idea is to compute the sphere-sphere separation probability
in terms of both the overall harmonic confining potential and
the unknownVsssrd. This is accomplished by summing the
Boltzmann factors for all the ways of arranging the spheres
with the desired separation:

Psrd ~E dx dy du expF−
1

2
Kfx2 + y2 + sx + r cosud2

+ sy + r sinud2g/kTGexpf− Vsssrd/kTg s10d

~ expF− S1

4
Kr2 + VsssrdD/kTG . s11d

One may differentiate this expression to show that the peak
in Psrd is where −dVss/dr=Kr /2, which is a statement of
force balance when each sphere isr /2 from the center of the
cell. Since the spring constantK is known from the one-
sphere experiment, and since the temperaturekT is known
from the mean-squared speeds, the functionsPsrd andVsssrd
may be deduced one from the other.

The separation probabilityPsrd is readily found from the
video data for the position of each sphere vs time. Results
are displayed by a dashed curve on the right axis of the upper
plot in Fig. 7. The probability rises abruptly from zero at a
separation equal to the sphere diameter. It reaches a peak
nearr=7 cm, and then gradually decays again toward zero.
The sphere-sphere potentialVsssrd can then be obtained from
Psrd using Eq.s11d. Results are shown by a solid curve on
the left axis of the upper plot in Fig. 7. The precipitous drop
of Vsssrd near contact indicates a hard-core repulsion. The
more gradual drop at larger separations indicates a softer
repulsion.

The actual force of repulsion may be found by differenti-
ating, Fsssrd=−dVss/dr. Results are shown by the solid
curve in the lower plot of Fig. 7. There is a hard-core repul-
sion, followed by a nearly constant-force repulsion when the
sphere centers are separated by more than two diameters.
Expressing the interaction in terms of a force allows us to
perform a check using an auxiliary mechanical measurement
of the response to tilting the entire apparatus by a fixed angle
u away from horizontal. This causes a constant component of
gravity,mgsinu, within the plane and breaks the radial sym-
metry; note that herem is the true mass, not the effective
inertial mass. Then we measure the probabilityfsx,yd for
finding a sphere at a given position, where the origin of the
coordinate system is at the center of the cell and where grav-
ity acts in the +ŷ direction. This probability has two peaks, at
coordinatess±r /2 ,ypd, separated by distancer. Assuming
only that the wall repulsion acts in the radial direction, the

statement of force balance at the peaks offsx,yd gives the
sphere-sphere repulsive force as

Fsssrd = S1

2
r/ypDmgsinu. s12d

In practice, to achieve a wider range in separations, we tilt
the apparatus by 0.013 rad and use cells of three different
diameters: 20, 25, and 30 cm. Observations then give the
repulsive force at three different separations as shown in the
lower plot of Fig. 7. Evidently the agreement with the results
from statistical mechanics is very good. This gives confi-
dence in the use of statistical mechanics to deduce the full
form of the repulsive sphere-sphere interaction.

VIII. CONCLUSION

We have exploited the thermal-like behavior of a single
gas-fluidized sphere to deduce the nature of the forces dic-
tating its motion. All these forces are mediated by turbulence
in the gas, but can be decomposed into distinct contributions.
Due to randomness in the shedding of turbulent wakes, there
is a rapidly varying random force specified by Eqs.s5d–s7d.
By virtue of the fluctuation-dissipation relation and Eqs.s1d
ands2d, these results also fully specify a velocity-dependent
drag force that damps rolling motion. The apparent interac-
tion of the wakes with the cell boundary gives rise to a

FIG. 7. sColor onlined Interaction between two spheres as a
function of their separationr. Using Eq.s11d, the potentialVsssrd is
inferred from the separation probabilityPsrd; these functions are
both shown in the upper plot. Systematic uncertainty inVsssrd is
indicated by dotted curves; it is due to statistical uncertainty in the
value of K. The repulsive force is shown in the bottom plot, as
obtained both fromVsssrd and from an auxiliary mechanical
measurement.

OJHA, ABATE, AND DURIAN PHYSICAL REVIEW E 71, 016313s2005d

016313-6



nearly harmonic force that keeps the rms sphere position at
about one-fifth the cell radius, no matter how the system
parameters are changed. The effective temperature, set by the
mean-squared speed in Eq.s4d, is a key parameter in these
forces. When a second sphere is added, the thermal analogy
still holds and these forces change only in detail. In addition,
there is a gas-mediated repulsion acting between the spheres
that is nearly constant beyond a few diameters of separation
and that grows stronger near contact.
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